Wednesday, January 28, 2009

Dinosaur Fossil Record Compiled, Analyzed; 500 Or More Dinosaurs Possible Yet To Be Discovered

ScienceDaily (Feb. 10, 2004) — A graduate student in earth and planetary sciences in Arts & Sciences at Washington University in St। Louis has combed the dinosaur fossil record from T Rex to songbirds and has compiled the first quantitative analysis of the quality and congruence of that record.

Julia Heathcote, whose advisor is Josh Smith, Ph.D., Washington University assistant professor of earth and planetary sciences, examined data of more than 250 dinosaur genera, or classes, as well as various clades, or family tree branches, of dinosaur classes.

Heathcote found that existing data is between one-half and two-thirds complete, or of high quality, for dinosaur data. As template, she used two published whole dinosaur studies and compared them with smaller family trees within the context of the whole dinosaur data, commonly known as the Dinosauria. She also analyzed for congruence – the correlation between the fossil record and family tree relationships. Heathcote found some of the clades both complete and congruent, while others are poor in both ways.

"The whole Dinosauria fossil record I would say is moderately good, which was a surprise, because I thought it would be much worse," Heathcote said. "It generally shows a low degree of completeness but a high degree of congruence with the existing phylogenies, or family trees, studied."

Her results are important for paleontologists who are especially focused on the evolution of dinosaurs. It is to the paleontologist what Beckett's Baseball Card Price guide is to the baseball card collector, and more -– Heathcote's analysis provides information on the relationships between classes and groups, whereas the Beckett guide draws no lineages for players, for instance.

Heathcote said that there have been many attempts to analyze evolutionary patterns using the fossil record, but that the patterns can only be interpreted usefully in the context of stratigraphy -- essentially how old the fossils are. It's important to know the quality of the fossil record to better assess whether an apparently large number of genera at any one time – say, the late Jurassic period – is due to genuine species diversity or just exceptionally good preservation. Congruence matters, too, to provide information on the adequacy of data and confidence to construct evolutionary relationships.

Heathcote presented her results at the annual meeting of the Geological Society of America, held Nov. 2-5, 2003, in Seattle.

Heathcote used three different calculations to achieve her results: the Stratigraphic Consistency Index, the Relative Completeness Index and the Gap Excess Ratio. The first is a measure of how well the relationships that have been proposed for dinosaurs fits in with the stratigraphic data, which contributes to a timeline for evolution. The Relative Completeness index measures the percentage of how much missing data there might be to how much researchers actually have. And the Gap Excess Ratio measures how much missing data there actually is to the minimum missing data possible if the genera were arranged in the family tree in order of age.

Heathcote said that the known number of dinosaurs now stands at slightly more than 250. But because her results give a maximum possible completeness value, there might be 500 or more yet to be discovered, and she hopes that with each discovery, the researchers will enter their data into her program so that all paleontologists can benefit by seeing how the new discovery relates to previous ones.

She called the work "a new tool that draws together all of the data of the past 150 years, all plotted out accurately for the first time. You can see how far back these dinosaurs go, see their relationships with each other."


Adapted from materials provided by Washington University In St. Louis.

Dinosaur Fossils Fit Perfectly Into The Evolutionary Tree Of Life

ScienceDaily (Jan. 26, 2009) — A recent study by researchers at the University of Bath and London’s Natural History Museum has found that scientists’ knowledge of the evolution of dinosaurs is remarkably complete।

Evolutionary biologists use two ways to study the evolution of prehistoric plants and animals: firstly they use radioactive dating techniques to put fossils in chronological order according to the age of the rocks in which they are found (stratigraphy); secondly they observe and classify the characteristics of fossilised remains according to their relatedness (morphology).

Dr Matthew Wills from the University of Bath’s Department of Biology & Biochemistry worked with Dr Paul Barrett from the Natural History Museum and Julia Heathcote at Birkbeck College (London) to analyse statistical data from fossils of the four major groups of dinosaur to see how closely they matched their trees of evolutionary relatedness.

The researchers found that the fossil record for the dinosaurs studied, ranging from gigantic sauropods to two-legged meat eaters such as T. rex, matched very well with the evolutionary tree, meaning that the current view of evolution of these creatures is very accurate.

Dr Matthew Wills explained: “We have two independent lines of evidence on the history of life: the chronological order of fossils in the rocks, and ‘trees’ of evolutionary relatedness.

“When the two tell the same story, the most likely explanation is that both reflect the truth. When they disagree, and the order of animals on the tree is out of whack with the order in the rocks, you either have a dodgy tree, lots of missing fossils, or both.

“What we’ve shown in this study is that the agreement for dinosaurs is remarkably good, meaning that we can have faith in both our understanding of their evolution, and the relative completeness of their fossil record.

“In other words, our knowledge of dinosaurs is very, very good.”

The researchers studied gaps in the fossil record, so-called ‘ghost ranges’, where the evolutionary tree indicates there should be fossils but where none have yet been found. They mapped these gaps onto the evolutionary tree and calculated statistical probabilities to find the closeness of the match.

Dr Wills said: “Gaps in the fossil record can occur for a number of reasons. Only a tiny minority of animals are preserved as fossils because exceptional geological conditions are needed. Other fossils may be difficult to classify because they are incomplete; others just haven’t been found yet.

“Pinning down an accurate date for some fossils can also prove difficult. For example, the oldest fossil may be so incomplete that it becomes uncertain as to which group it belongs. This is particularly true with fragments of bones. Our study made allowances for this uncertainty.

“We are excited that our data show an almost perfect agreement between the evolutionary tree and the ages of fossils in the rocks. This is because it confirms that the fossil record offers an extremely accurate account of how these amazing animals evolved over time and gives clues as to how mammals and birds evolved from them.”

The study, published in the peer-reviewed journal Sytematic Biology, was part of a project funded by the Biotechnology & Biological Sciences Research Council (BBSRC) that aimed to combine different forms of evolutionary evidence to produce more accurate evolutionary trees.

----------------------------------------------------------

Journal reference:

  1. Wills et al. The Modified Gap Excess Ratio (GER*) and the Stratigraphic Congruence of Dinosaur Phylogenies. Systematic Biology, 2008; 57 (6): 891 DOI: 10.1080/10635150802570809
Adapted from materials provided by University of Bath